
Whatcha Lookin’ At: Investigating Third-Party Web Content in
Popular Android Apps

Dhruv Kuchhal
dkuchhal@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Karthik Ramakrishnan
rkarthik@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Frank Li
frankli@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Abstract
Over 65% of web traffic originates from mobile devices. However,
much of this traffic is not from mobile web browsers but rather
from mobile apps displaying web content. Android’s WebView has
been a common way for apps to display web content, but it entails
security and privacy concerns, especially for third-party content.
Custom Tabs (CTs) are a more recent and recommended alternative.

In this paper, we conduct a large-scale empirical study to ex-
amine if the top ∼146.5K Android apps use WebViews and CTs
in a manner that aligns with user security and privacy considera-
tions. Our measurements reveal that most apps still use WebViews,
particularly to display ads, with only ∼20% using CTs. We also
find that while some popular SDKs have migrated to CTs, others
(e.g., financial services) benefiting from CT’s properties have not
yet done so. Through semi-manual analysis of the top 1K apps, we
uncover a handful of apps that use WebViews to show arbitrary
web content within their app while modifying the web content
behavior. Ultimately, our work seeks to improve our understanding
of how mobile apps interact with third-party web content and shed
light on real-world security and privacy implications.

CCS Concepts
• Security and privacy → Web application security; • Infor-
mation systems→ Browsers.

Keywords
Android, WebView, CustomTabs, In-App Browser, Web, Privacy
ACM Reference Format:
Dhruv Kuchhal, Karthik Ramakrishnan, and Frank Li. 2024.Whatcha Lookin’
At: Investigating Third-Party Web Content in Popular Android Apps. In
Proceedings of the 2024 ACM Internet Measurement Conference (IMC ’24),
November 4–6, 2024, Madrid, Spain. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3646547.3688405

1 Introduction
Mobile devices are ubiquitous in today’s digital world. According
to a recent estimate, more than 65% of web traffic originates from
these devices [25]. This traffic includes users browsing the web via
mobile browsers as well as various mobile apps that display web
content. Examples include hybrid mobile apps that render a web

This work is licensed under a Creative Commons Attribution
International 4.0 License.

IMC ’24, November 4–6, 2024, Madrid, Spain
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0592-2/24/11
https://doi.org/10.1145/3646547.3688405

page in full-screen mode within an app, in-app advertisements that
show free content alongside ads, and web links that users follow
from within an app.

Traditionally, such functionality has been achieved using the
android.webkit.WebView class, or simply ‘WebView’. WebView
is a component of Android’s View class that allows developers to
embed web pages into their app’s interface [12]. Android suggests
using it only for trusted first-party content, as it gives the app
more control over the webpage, such as executing Javascript (JS)
code, intercepting requests, and enabling interaction between the
webpage and the app’s native code [11]. These properties support
hybrid app experiences that can be useful in many contexts [88, 89].
However, nothing prevents an app from loading untrusted third-
party content in a WebView, which exposes a large attack surface
as previously identified (see Table 1).

On the other hand, Custom Tabs (CT) is a feature designed for
securely and efficiently displaying third-party web content [60].
It has been available in Android devices since 2015 [1]. With CTs,
developers can provide a customized browser experience within
their app using Android browsers such as Chrome. It loads the
webpage with access to the user’s default browser cookies but
does not manipulate the page itself [11, 28]. CT offers the latest
browser experience, with a secure user interface (e.g., TLS lock
icon), without requiring extra development effort. It has also been
found to load pages up to twice as fast as WebView, as shown in
Figure 7 in the Appendix [2]. We summarize the advantages of
using CTs over WebViews for displaying third-party web content
in Table 1. However, there is limited empirical research on whether
developers leverage CT’s advantages in the real world.

In this paper, we conduct large-scale measurements of popular
Android apps to understand how they interact withweb content.We
analyze ∼146.5K apps, each with over 100K users, and find ∼55.7%
apps using WebViews, ∼20% using CTs, and ∼15% using both. To
infer use cases, we detect 125 popular SDKs using WebViews, 45
using CTs, and 34 using both. Our results indicate that WebViews
weremainly used for advertising purposes, with 46 SDKs supporting
this use-case in ∼39K apps. In contrast, CTs were predominantly
used for social media integration, with 6 SDKs enabling this use-
case in nearly 24K apps. We combine our measurements with the
extensive prior work on the insecurity of WebViews to propose
evidence-based recommendations for both app and SDK developers.
Overall, we find that there are still many widely-used SDKs that
would benefit from migrating from WebViews to CTs.

In addition, we conduct a semi-manual analysis of the top 1K
apps, identifying cases where apps override Android’s default be-
havior of opening third-party URLs in a browser. We found 11 apps
launched an In-App Browser (IAB), defined as any non-browser

https://orcid.org/0000-0002-8354-7241
https://orcid.org/0000-0002-8354-7241
https://orcid.org/0000-0002-8354-7241
https://doi.org/10.1145/3646547.3688405
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3646547.3688405

IMC '24, November 4�6, 2024, Madrid, Spain Dhruv Kuchhal, Karthik Ramakrishnan, and Frank Li

Comparison Attribute WebViews CustomTabs
Attack vectors from

third-party web content
or malicious app code

7 Vulnerable due to bidirectional access
between web and app contexts [42, 42, 61, 69, 72, 76, 82, 82, 95, 97, 97].

3 Untrusted web content loads in browser context
isolated from app context (no bidirectional access).

Phishing 7 Vulnerable to cookie/credential stealing [54, 96].
3 Supports passkeys (phishing resistant).

3 Secure UI (e.g., TLS icon).
7 Side-channel attacks exist [43].

Browser Fingerprinting
7 WebViews are signi�cantly

more vulnerable [90, 91].
3 Same default web browser

used across multiple apps.
Page Load Time 7 Slower, doesn't allow pre-initialization. 3 Faster, allows pre-initialization [2].

User Experience 7 User needs to authenticate repeatedly.
3 User's active sessions are restored

using existing browser cookies.

Table 1: Advantages of using CustomTabs over WebViews for displaying third-party web content.

Activity that can navigate to an arbitrary URL. Of these 11 apps, 10
apps implemented a WebView-based IAB, which we experimented
with further. We uncover unique behaviors of these apps (with mil-
lions of downloads) modifying the web content, such as facilitating
payments, ad injection, and crowdsourcing network measurement
from end-user devices.

Ultimately, this work serves as a key step in better understanding
how mobile apps interact with web content, particularly third-party
content. Through our �ndings, we identify real-world security and
privacy implications of mobile app behaviors and provide recom-
mendations for mobile SDK and app developers.

2 Related Work
While WebView-based mobile apps o�er a seamless and enriched
user experience with relatively low development demands, they
bear the risk of potential security and privacy concerns. Apps uti-
lizing WebViews can inject Javascript (JS) code into webpages,
enable bidirectional communication between native Java objects
and webpages through JS Bridges, and control network requests.
In 2011, Luo et al. introduced the threat model for WebViews, il-
lustrating how they could serve as attack vectors for webpages
within malicious apps or for malicious webpages embedded in be-
nign apps [72]. Since then, numerous static analysis approaches
have been proposed to detect data leaks and code injection attacks
through JS Bridges [42, 82, 97]. Additionally, vulnerabilities and
bugs introduced by interactions with the JS Bridge [61, 69, 76] and
native app event handlers [95] have been identi�ed. WebViews
have also been manipulated to expand traditional web-based at-
tacks, such as phishing [96] and browser �ngerprinting [90, 91].
Moreover, malware has been discovered exploiting the capabilities
of WebViews to evade detection [87]. As apps have become more
complex, the threat landscape has also evolved. Recently, Zhang
et al. examined how identity confusion in WebView-based apps
can expose privileged APIs of one app component to an unrelated
component [98, 102].

WebViews possess such expansive access rights primarily be-
cause they are intended to present trusted �rst-party content. How-
ever, no restriction prevents them from loading third-party content.
Tuncay et al. suggested a policy-based strategy modeled after the
Same-Origin-Policy, permitting granular control over web origins
within WebViews [92]. Nevertheless, in practice, Zhang et al. iden-
ti�ed instances of inter-party manipulation of web resources in
WebViews [100]. The majority of these manipulations served be-
nign purposes like customizing web services or enabling hybrid

functionality. Yet, there were a handful of malicious instances aimed
at stealing cookies or user credentials. It is worth noting here that
Zhang et al.'s approach uses static analysis techniques to generate
the URLs passed into the WebView. This means their analysis is
constrained to URLs that already exist in the app in some form
prior to its execution. Therefore, their �ndings do not extend to
IABs implemented with WebViews. In other words, if a user clicks
a third-party link seen in a social media app and that link opens in
a WebView, this behavior is not included in their study because the
URL was not originally present in the app.

In order to mitigate these risks, Android encourages employing
CT for any non-�rst-party or untrusted web content [12]. Beer et
al. recently proposed that the callback mechanism of CTs could be
exploited as a cross-site oracle [43, 44], which highlights the need
for developers to follow secure practices even when implementing
CTs. That said, the attacks demonstrated on CTs so far are far less
impactful than the ones discovered existing in the wild for Web-
Views. To date, there has been limited empirical investigation into
the real-world adoption of CT. Zhang et al. studied IAB implemen-
tations in 25 popular apps from a usable security perspective [101].
Their �ndings indicate that IABs leveraging CT generally exhibit
secure behaviors, whereas every single IAB utilizing WebViews
presented at least one insecure behavior. Through our research, we
o�er an extensive characterization of WebView and CT adoption,
drawing from a large-scale evaluation of popular Android apps.
Furthermore, we contribute to a comprehensive understanding of
privacy-invasive behavior within WebView-based IABs found in a
smaller sample of widely used apps.

3 Method
In this section, we describe our method for assessing the usage of
WebViews and Custom Tabs (CTs) within Android apps. First, we
outline our systematic approach to a large-scale analysis using static
techniques aimed at discerning patterns and deriving insights at an
ecosystem level. Subsequently, we describe our usage of dynamic
analysis methods, applied to a smaller, select subset of popular apps,
which enables us to delve into the speci�cs of their behavior.

3.1 Static Analysis
Here, we delve into the details of our dataset and the methodology
we use to apply static analysis techniques to characterize the usage
of WebViews and CTs in apps. Figure 1 helps illustrates each of the
steps in our static analysis pipeline.

Whatcha Lookin' At: Investigating Third-Party Web Content in Popular Android Apps IMC '24, November 4�6, 2024, Madrid, Spain

Figure 1: Our static analysis pipeline. (1) We fetch the list of Android apps available in AndroZoo [39] and for each app, we
fetch its metadata from Google Play Store. (2) For apps that have been updated at least once in the last two years, and have been
downloaded more than 100K times, we download their most recent APK from AndroZoo. (3) Next, we decompile each APK
(using JADX [57]) and extract the names of classes that extend the WebView class. (4) Finally, we generate call graphs for each
APK (using Androguard [10]) and (5) record the instances where a WebView method is called or a CT is initialized.

3.1.1 Dataset.We use Androzoo, a widely used repository of An-
droid apps, which periodically fetches Android Package Kit (APK)
�les from multiple app stores, including the Google Play Store [39].
Using the January 13, 2023 snapshot of Androzoo, we fetch the list
of � 6.5M apps that have appeared in the Google Play Store. Since
our aim was to gain insights about popular apps that are currently
being used by a large population of users, we collected app meta-
data from the Google Play Store, which included information such
as the number of times an app was installed and the category of the
app, among other information [20]. Next, after �ltering for apps
that had at least 100K downloads and were being actively main-
tained, i.e., had been updated at least once after January 1, 2021, we
narrowed it down to a set of 146.8K apps. For each of these 146.8K
apps, we downloaded their most recent APK from AndroZoo for
further analysis.

Dataset No. of apps
Play Store apps in Androzoo 6,507,222

Apps found on Play Store 2,454,488
Apps with 100k+ downloads 198,324
Apps with 100k+ downloads

and updated after 2021
146,800

Apps successfully analyzed 146,558
Table 2: Statistics for apps that we statically analyze.

3.1.2 Preprocessing APKs.For apps to display web content using
WebViews, they need to instantiate objects of the Android class
android.webkit.WebView as part of their activity layout [12]. The
WebViewclass o�ers extensibility in terms of customizing the UI
and other advanced con�guration options, so it is only natural
that developers extend theWebViewclass to build their own cus-
tom WebView experiences. To detect such custom WebView class
implementations, our approach is two-fold. Firstly, we decompile
the downloaded APK �les into Java source code using JADX, a
state-of-the-art tool with the lowest failure rate compared to other
tools [57, 74]. Secondly, for each class �le in the source code that

importsandroid.webkit.WebView, we use an open-source parser
to parse the Java source code [80] and extract the names of classes
that extend the WebView class. With this information, we can accu-
rately pinpoint the entities in the source code that instantiate and
interact with WebViews, as we will describe in detail shortly.

The behavior of a program, precisely its control �ow relating
to the sequence and dependencies of function calls, can be e�ec-
tively comprehended through static analysis techniques like call
graphs. As a crucial part of our preparatory process for analysis,
we generated call graphs for all 146.8K APKs we had procured.
This was achieved using Androguard [10], an open-source reverse
engineering tool speci�cally designed to analyze Android apps,
and a component of well-established security and privacy toolkits
like Cuckoo Sandbox and Exodus, respectively. Our preference for
Androguard, over other tools such as FlowDroid [40], was informed
by several factors. FlowDroid, while widely cited in the literature
for smaller datasets, is primarily designed for taint-tracking and
leads to comparatively higher failure rates and increased resource
overheads [84]. In contrast, Androguard enabled us to generate
call graphs for 99.8% of the apps in our dataset. The remaining 242
APKs were discovered to be broken. A summary of our dataset is
available in Table 2.

3.1.3 Measuring WebView and CT Usage.An Android app is com-
prised of various components, speci�cally Activity, Service, Content
Provider, and Broadcast Receiver. Any of these elements can serve
as the initial point of interaction or �entry point� which leads to
a WebView or CT [49]. Multiple entry points exist within a single
activity, facilitated by lifecycle methods likeonCreate() or call-
backs tied to system or GUI events, each of which could follow a
di�erent control �ow. Unlike other apps built with Java, an Android
app lacks a `main' function, which could be considered the primary
entry point. Therefore, in order to exhaustively identify the usage
of WebViews and CTs in an app, we traversed the app's entire call
graph via all entry points, recording every call to WebViews and
CTs. For WebView-related activity, we recorded the names of the
WebView class methods that were called, along with the names of

IMC '24, November 4�6, 2024, Madrid, Spain Dhruv Kuchhal, Karthik Ramakrishnan, and Frank Li

the classes in which the respective call was made. For CT-related ac-
tivity, we similarly recorded calls made for theCustomTabsIntent
intent class ofandroidx.browser.customtabs [16].

Next, to �lter out app activities that are likely to host �rst-party
web content, we identi�ed activities that can handle deep links to
app content [15] and excluded them from further consideration.
Speci�cally, we used the app manifest to check if an activity has
the �ag exported set totrue , and contains an intent-�lter of the
categoryandroid.intent.category.BROWSABLE, which accepts
data with a scheme of eitherhttp or https .

3.1.4 Identifying and Labelling SDKs.To understand the reasons
why an app might utilize a WebView or CT, we explored whether
the Java package responsible for invoking the methods that popu-
late content into these components is part of an SDK with a de�ned
function. In the case of WebViews, we searched for calls to one of the
following methods:loadUrl , loadData, or loadDataWithBaseURL.
For CTs, we searched for method calls tolaunchUrl . These meth-
ods would need to be invoked to populate content. Since we had
recorded which classes called these methods, we were able to ex-
tract the package names from those classes, assuming that package
names adhere to the proper Java conventions [26]. In aggregate,
we identi�ed 141 packages, each of which was used by more than
100 apps. We then used data from the Google Play SDK Index [21]
and supplementary Google Search to label these packages into SDK
categories if they were known to be part of certain SDKs. Excluding
Google's Android SDK (com.google.android) � due to its multiple
essential functions � we successfully categorized 126 out of 140
packages. The remaining 14 packages either had obfuscated labels
(4), or they could not be associated with any known SDK (10).

We summarize statistics for the various types of SDKs found
using WebViews and CTs in Table 3. We also illustrate examples of
the most popular SDKs we identi�ed as using WebViews and CTs
in Tables 4 and 5 respectively.

No. of SDKs
Type of SDK Use

WebViews
Use
CT

Use
both

Advertising 46 3 3
Payments 15 6 5

Development
Tools

11 7 5

Engagement 12 0 0
Social 10 6 4

Authentication 7 10 6
Unknown 10 4 4

Hybrid
Functionality

6 7 5

Utility 4 2 2
User Support 4 0 0

Total 125 45 34
Table 3: Statistics for use of WebViews and CTs in SDKs.

Type of SDK
Total
#apps

SDK Name #apps

Advertising 39,163

AppLovin 27,397
ironSource 16,326
ByteDance 13,080

InMobi 10,066
Digital Turbine 8,654

Engagement 21,040

Open Measurement 11,333
SafeDK 7,427
Airship 652
Branch 514

Development
Tools

7,020

Flutter 5,568
InAppWebView 1,868

Corona 449
AdvancedWebView 386

Payments 3,212
Stripe 1,171

RazorPay 484
PayTM 400

User
Support

1,692
Zendesk 1,000
Freshchat 438

LicensesDialog 129

Social 1,686
VK 456

NAVER 406
Kakao 347

Utility 362
NAVER Maps 130

Barcode Scanner 129
Ticketmaster 64

Authentication 342
Gigya 120

NAVER 90
Amazon Identity 37

Hybrid
Functionality

256
Baby Panda World 194

SoftCraft 15
Cube Storm 14

Table 4: Popular SDKs which use WebViews.

Type of SDK
Total
#apps

SDK Name #apps

Social 23,807
Facebook 23,234
NAVER 157
Kakao 54

Authentication 7,802
Google Firebase 7,565

NAVER 81
AdobePass 55

Advertising 1,953
HyprMX 1,257

Linkvertise 383
Taboola 317

Payments 208
Juspay 77

Ticketmaster
Checkout

47

Development
Tools

172
android-customtabs 53

GoodBarber 48
Mobiroller 27

Hybrid
Functionality

87
Cube Storm 14

Scripps News 13

Utility 71
Ticketmaster 55

MyChart 16

Table 5: Popular SDKs which use CTs.

Whatcha Lookin' At: Investigating Third-Party Web Content in Popular Android Apps IMC '24, November 4�6, 2024, Madrid, Spain

3.1.5 Limitations.Our approach enables us to conduct a large-
scale study of the usage of WebViews and CTs. However, it is worth
noting some important limitations to our methodology.
� A recognized limitation of static analysis methods is their ten-

dency to produce false positives. False positives may occur for
various reasons. For instance, in our case, speci�c logic within
an application might prevent initiating a code block that utilizes
WebViews or Custom Tabs (CTs), often due to user interactions.
Despite this, static analysis has been e�ectively employed in
previous studies for large-scale measurements [45, 70, 94].

� Our investigation targets the identi�cation of method calls based
on their characterized behavior as detailed in Android's docu-
mentation. Consequently, our method may fall short in detecting
obfuscated method calls exhibiting similar behaviors. It is worth
noting, however, that obfuscation is relatively uncommon in
apps available on the Google Play Store [52].

� Our approach assumes that a third-party SDK would serve third-
party web content, however that might not necessarily always
be true. For precise identi�cation of the web content loaded,
static modeling of control or data �ow instigated by user inter-
actions with the app would be required. However, this has been
identi�ed as a limitation to static analysis methods [45, 94].

3.2 Semi-Manual Dynamic Analysis
Building upon the insights garnered from our large-scale static
analysis of WebView and CT utilization in apps, we meticulously
carry out a semi-manual analysis of the top 1K apps with the goal
of understanding how apps implement WebView-based IABs to
handle third-party web links. In this case, we speci�cally consider
WebViews, which display third-party web content a user navigates
to by clicking on an external link, rather than web content belonging
to a third-party SDK, as we did with large-scale static analysis.

3.2.1 Dataset.From the� 146.8K apps we had selected in Sec-
tion 3.1.1, we further select 1K apps with the highest number of
downloads. We programmatically download each app from the
Google Play Store and install it on a Pixel device. Dummy accounts
are manually created where necessary to access content within the
app. Next, we manually investigate areas of the app that potentially
contain user-generated web links. Intuitively, we focus on sections
that display user-generated content, for example, social media feeds
with user posts and comments, direct message or chat interfaces,
and pro�le biographies where users may link a�liated web pages.
This methodology echoes that of Zhang et al.'s approach to studying
the security design of IABs [101]. Our analysis uncovers 38 apps,
incidentally belonging solely to the social and communication cate-
gories, where users can post links. We �nd that 905 of the 1K apps
we analyze do not contain user-generated content. These are pre-
dominantly utility apps such as media players, entertainment, stock,
and gaming apps. Notably, nine apps are browsers themselves, and
the remaining 48 apps are unclassi�able due to various factors, as
presented in Table 6.

For the 38 apps where users can post links, we manually submit
a link to https://example.com and follow it. We observe that
approximately 71% (27 of 38) of the apps open the links in a browser,
which is the intended and default behavior for web links in apps,
thus these apps are not studied further. Interestingly, we discovered

around 26% (10 of 38) of the apps open this third-party link in a
WebView-based IAB. For instance, if a Facebook user clicks on a
URL they see on their feed, it opens inside a WebView-based IAB.
Discord is the only app that opens the link in a CT. For reference,
Figure 2 di�erentiates the UI �ow between WebViews and CTs, and
Table 6 summarizes these statistics.

Classi�cation of apps #apps

Users can post links. 38

Link opens in browser. 27

Link opens in a WebView. 10

Link opens in CT. 1

Users can not post links. 905

Browser Apps. 9

Could not classify app. 48

Required a phone number. 24

App incompatibility error. 22

Required paid account. 2

Table 6: Statistics for our manual classi�cation of hyperlink
clicking behavior in the top 1K Android apps on Play Store.

3.2.2 Measurement Setup.We previously established that CTs are
the most e�cient and secure approach to implementing IABs. To
investigate the motives of apps using WebViews to implement IABs,
we navigate each of the 10 WebView-based IABs to a controlled web
page hosted on our server and record the following measurements:
� App-WebView Interactions: Using Frida [19], a widely-used dy-

namic instrumentation tool [38,78,99], we dynamically override
all methods ofandroid.webkit.WebView at run-time in order
to record the WebView APIs used by the app, along with the
arguments passed. Speci�cally, when an app interacts with Web-
View beyond mere loading of the URL, this information provides
detailed insight for further analysis.

� JS Code Injection: An app can inject JS code into a WebView pri-
marily via methodsevaluateJavascript andloadUrl . evalu-
ateJavascript allows executing JS code in the WebView and
retrieving the result asynchronously, whileloadUrl can be used
to execute JS code once the page has �nished loading by prepend-
ing javascript: (as the scheme) to the code. In cases where
such injection is detected, we further record:
� Web API usage: We host the HTML5 test page (composed of

common HTML elements) developed by Bracco et al. [46] as
our controlled web page. The only JS script used on the page
is meant to override all methods of all Web APIs as listed
in MDN Web Docs [75] and submit the intercepted requests
with parameters back to our server [64]. Thus, when the
injected JS code uses any Web APIs, our server records it.

� Network Logs: We use a rooted Pixel 3 mobile device run-
ning LineageOS 19 [23] for our measurements. LineageOS
is a customuserdebugimage of Android, which enables us
to record the network logs directly from Chrome's network

IMC '24, November 4�6, 2024, Madrid, Spain Dhruv Kuchhal, Karthik Ramakrishnan, and Frank Li

(a) WebView-based IAB in Facebook. (b) CT-based IAB in Discord.

Figure 2: Screenshots showing WebView and CT-based IAB implementations in Facebook and Discord, respectively.

stack [59]. As opposed to capturing device-wide network traf-
�c via mitmproxy, we are able to collect detailed network logs
for each web page visit via a speci�c WebView instance. Pre-
vious work has found such logs reliable for website-speci�c
network measurements [67].

With this comprehensive set of measurements, we can gain a nu-
anced understanding of the user's privacy posture when employing
WebView-based IABs. Finally, we use our measurement setup to in-
vestigate if the behavior of WebViews varies based on the website a
user visits. To this end, we systematically crawl the landing pages of
100 randomly selected top sites, taken from Google Chrome's top 1K
most visited origins in the snapshot of February 2023 (CrUX) [83],
using the ten di�erent WebViews previously identi�ed. In addition
to the WebViews found on apps, we also crawl each site using the
Android's System WebView Shell App which gives us a baseline for
the network requests expected to be made from a WebView with-
out any injections [32]. These crawls were executed with a Pixel 3
device, which was connected to an academic ISP via WiFi. For each
app, a distinct crawler was crafted using Android Debug Bridge
(ADB) commands to traverse the unique user interface of the app.
During each website visit, the script utilizes Android Debug Bridge
(ADB) commands to (i) launch the app, (ii) navigate to the intended
activity by simulating screen taps at predetermined coordinates,
(iii) insert the desired crawl URL, (iv) tap on the URL to instigate a
visit within a WebView, and (v) swipe upwards to scroll through to
the end of the webpage. Following a 20-second wait to allow the
page to load fully, we gather the device's network log. To ready the
system for the next crawl, we also purge the logs on the device,
terminate the app, and wait for 1 minute.

3.2.3 Limitations.Our approach enables us to conduct comprehen-
sive measurements for WebView-based IABs in real-world Android

apps. However, it is worth noting some important limitations to
our methodology.
� Our methodology inherently necessitates signi�cant manual ef-

fort, thus constraining our scope to a limited number of apps. We
focus on the top 1K apps due to their wide usage and signi�cant
in�uence on the user base. In all 10 apps where we discovered
WebView-based IABs, the creation of dummy accounts was a
prerequisite to accessing the app content. Automating account
creation is challenging to fully automate, given the broad diver-
sity in app UI designs and authentication work�ows. For the
same reason, Android's Monkey [50] - despite its e�cacy in
other studies - may also not be e�ective in our context.

� During our manual analysis, we observed only 1 WebView-
based IAB per app. However, it is possible that there exist other
WebView-based IABs, embedded deeper within the app or acti-
vated by speci�c user behavior we did not replicate. While our
observations might not fully encapsulate all potential privacy-
invasive actions apps could be executing in the wild, they con-
tribute an initial, meaningful characterization of why apps may
still employ WebView-based IABs.

� Our crawl, although automated, was limited to the landing pages
of the top 100 sites. The restriction was due to rate-limiting we
experienced with the Facebook app, which restricted our ac-
count twice during the measurements, necessitating manual
intervention and the creation of new dummy accounts. Web-
Views might exhibit di�erent behaviors on other web pages that
we did not crawl.

� During our crawls, we attempt to load the entire page by scrolling
down through the end of the page and allowing a 20-second
pause for resources to load. However, we did not emulate any
additional user behaviors. WebViews could exhibit additional

Whatcha Lookin' At: Investigating Third-Party Web Content in Popular Android Apps IMC '24, November 4�6, 2024, Madrid, Spain

behavior when the user interacts with the page (e.g., form �ll-
ing). Our measurements are a �rst step towards understanding
the dynamics of WebView-based IABs in Android apps.

� TheaddJavascriptInterface method of theWebViewclass fa-
cilitates an interface between the app native code and the JS
Virtual Machine inside the WebView. Our measurements success-
fully record instances when such a bridge is exposed. However,
our methodology lacks the ability to monitor the communication
between the JS VM and the Java methods.
We would be happy to share the code and data used to derive

the results in this paper privately with researchers interested in
reproducing and extending our work.

4 Findings
In this section, we examine the data from our measurements de-
scribed in Section 3, aiming to understand the diverse ways that
web content is embedded in Android apps. We mainly investigate
the di�erent use cases for which apps use WebViews and CTs. Con-
sidering the security, privacy, and performance issues related to
WebViews, we hypothesize that WebViews should only be used in
situations where CTs are insu�cient � speci�cally, in cases where
the app needs to interact with the web content, such as in a hybrid
app. Furthermore, we explore the use cases where CTs could o�er
better security and privacy protection than WebViews. We also
identify the apps that use WebViews to display IABs and analyze
the reasons and implications of this choice, particularly if it exposes
users to any security or privacy risks.

4.1 App Use of WebViews vs. CTs
In Section 3.1, we describe our method for analyzing the usage of
WebViews and CTs in the 146.5K most popular apps using static
analysis techniques. Our analysis reveals that 55.7% of the apps
use WebViews, 20% incorporate CTs, and 15% make use of both.
Cumulatively, we detected 125 SDKs using WebViews, 45 SDKs
using CTs, and 34 SDKs using both. The popular SDKs we identi�ed
are used in approximately 67% of the apps integrating WebViews,
96% of the apps adopting CTs, and 76% of the apps utilizing both.
These statistics are summarized in Table 7. It is worth noting that
an app could be making use of more than one SDK, and it could also
have multiple instances of WebViews or CTs, some of which might
not be facilitated through the top SDKs. We take a holistic approach
to examining the use cases of WebViews and CTs through prevalent
SDKs as it allows us to identify patterns and extract insights.

We analyzed the use cases of WebViews and CTs in di�erent app
categories, as shown in Figure 3. We found that WebViews were
mainly used for advertising purposes, with 46 SDKs supporting this
use case in about 39K apps. In contrast, CTs were predominantly
used for social media integration, with 6 SDKs enabling this use case
in nearly 23.8K apps. We observed that gaming apps (Puzzle, Simu-
lation, Action, and Arcade) frequently used CT-based social media
SDKs, while education apps used a lower proportion of WebView-
based Ad SDKs (44%) and a higher proportion of WebView-based
Payment SDKs (� 16.2%). We summarize the statistics for use of
WebViews and CTs in SDKs in Table 3, and statistics for the top
SDKs using WebViews and CTs in each categories in Table 4 and

Dataset
Total
#apps

#apps using
top SDKs

Apps using WebViews 81,720 54,833
loadUrl 77,930 50,984

addJavascriptInterface 36,899 23,087
loadDataWithBaseURL 35,680 27,474

evaluateJavascript 26,891 18,716
removeJavascriptInterface 19,684 15,034

loadData 8,275 918
postUrl 5,028 2,678

Apps using CTs 29,130 27,891
Apps using both

WebViews and CTs
21,938 16,810

Table 7: Statistics of the apps using WebViews and CTs. For
the apps using WebViews, we consider the usage of WebView
API methods that can be used to load and modify (by injecting
JS) the web content requested by the user.

Table 5 respectively. Next, we will comprehensively discuss each
individual SDK use case to acquire an exhaustive understanding.

4.1.1 Advertising (Ads).In-app Ads are a major source of revenue
for free Android apps and are essential to the mobile app economy.
These ads are usually displayed in banner or interstitial formats,
showcasing rich media, such as HTML5 content, or interactive ads,
which are often streamed directly from the internet [37]. Google's
Mobile Ads SDK empowers app developers to monetize their app
content by showing Google's third-party ads adjacent to it. At the
time of our study in 2023, the SDK primarily utilized WebViews,
while supporting CustomTabs minimally [22]. However, starting
March 2024, the SDK has released support for monetization and anti-
fraud protections when implemented via CTs (in Beta) [36], which
indicates a positive shift towards increased CT adoption. Similar
to Google Ads, there are several other ad networks implementing
mobile ad SDKs, many of which have been studied by previous
work [41, 47, 71, 77, 86].

Notwithstanding the benign nature of most ads served by these
networks, numerous instances exist of malicious ads exploiting We-
bViews' capabilities. Liu et al. discovered instances where popular
mobile ad networks manipulated WebViews to present deceptive
click ads, execute malevolent JavaScript code on the device (such
as cryptojacking), redirect users to harmful websites, and deceive
users into downloading malicious apps [71]. Browsers, which CTs
can utilize, are constantly evolving to incorporate robust defenses
against such web threats. For instance, features such as Google's
Safe Browsing o�er real-time threat intelligence [58], which could
potentially decrease users' exposure to harmful content. Since Web-
Views are customizable, Ad SDKs can choose to disable SafeBrows-
ing, whereas Ad SDKs using CTs would be subject to SafeBrowsing
unless the user has explicitly disabled it in their browser. Research
conducted by Son et al. has highlighted instances where malicious
mobile ads have exploited the access granted by WebViews to ex-
tract sensitive information from the device's external storage, and
in certain cases, even read the user's local �les [86]. Furthermore,
there have been proposals to enforce stricter separation of privi-
leges between the ad SDK environment and the host app [77, 85].

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Static Analysis
	3.2 Semi-Manual Dynamic Analysis

	4 Findings
	4.1 App Use of WebViews vs. CTs
	4.2 WebView-Based IABs

	5 Concluding Remarks
	Acknowledgments
	References
	A Appendix
	B Ethics

